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LETTER TO THE EDITOR 

The Hall coefficient of disordered electronic systems in 
high magnetic fields 

0 Viehweger and K B Efetov 
Max-Planck-Institut fur Festkorperforschung, Heisenbergstrasse 1, D-7000 Stuttgart 80, 
Federal Republic of Germany 

Received 18 May 1990 

Abstract. We calculate the Hall resistivity in the low frequency limit for a model of inde- 
pendent electrons in the lower tail of the density of states of the disorder broadened lowest 
Landau level. It is shown that the Hall coefficient remains finite for w + 0 even in the lowest 
localization regime for 2D as well as for 3D systems in contrast to the characteristics of 
magnetic freezing out. We relate our theoretical results to recent experiments on magnetic 
field induced MI transitions in doped semiconductors. 

In a recent experiment Hopkins et a1 [l] studied the behaviour of the resistivities in 
uncompensated degenerately doped Ge : Sb slightly above the critical concentration, as 
a function of the magnetic field. Increasing the magnetic field beyond 4 T they observed 
an increase of pxx of about 3 orders of magnitude whereas the Hall coefficient changed 
only by a factor of 2-4. In the same region the temperature dependence of the longi- 
tudinal resistivity changed from a metallic to an activated behaviour. 

This phenomenon cannot be explained by freezing out (cf [2]) because this would 
imply a simultaneous reduction of the apparent carrier concentration and thus a drastic 
increase of the Hall coefficient. 

Hopkins et a1 [ 13 conjectured that some magnetic field induced localization mech- 
anism might be involved. However, to the best of our knowledge no theoretical results 
for the Hall resistivity in the localized regime have been presented so far. 

Motivated by the above presented phenomenon we consider a simple model of non- 
interacting electrons in a random potential subjected to a strong magnetic field B and 
show that pxx diverges in the limit of low frequencies w but pxy remains finite. 

In fact we calculate the conductivities apv and only then can we find the resistivities 
using the relations 

In the lowest localized region both a,, and arx vanish in the limit w + 0 and the 
inversion of the conductivity tensor in (1) has to be performed for finite frequencies. It 
is well known that the leading term in the frequency dependence of the longitudinal 
conductivity a,, is proportional to iw. Below we show that the Hall conductivity in the 
low frequency limit is proportional to w2. From this proportionality together with (1) 
the above proposed behaviour of p,.. and pxy follows immediately. 
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Since the derivation of our results is rather involved we will present in this letter only 

Now let us formulate the model. The one-particle Hamiltonian of the system reads 
the outline of our method stressing the principle aspects. 

H = H o  + V(r) 

H o  =(1/2m)Ip-eAI2 A=93( -y7x ,O) .  

The random potential is assumed to be white noise, i.e. 

V(r)  = o V(rl)V(r2) = A6(rl - r2) .  (3) 
Our calculations are based on the Kubo formula and it has turned out to be convenient 
to use the following decomposition of the conductivities at finite frequencies 

c7Jw) = al;,)(w)+ &) (U)  

f(E + 4 2 )  3 f(E - 4 2 )  (4a) K ( T ) ( r ,  r’ ; E ,  w )  d rd  r’ d E 4 n v  w 

with 

K(-) (r ,  r ’ ;  E ,  O) = 2G+(r, r ’ ;  E +  ~ / 2 ) G - ( r ’ , r ;  E -  ~ / 2 )  

- G + ( r , r ’ ;  E+0/2)G+(r’ , r ;  E - 0 / 2 )  

- G-(r ,  r’;  E +  01/2)G-(r’,r; E -  0 /2 )  

K f + ) ( r , r ’ ;  E ,  U ) =  G+(r,r’;  E+w/2)G+(r’ , r ;E-w/2)  

- G-(r,r’;  E+01/2)G-(r‘,r;E-w/2) (4b) 

where h = 1. V denotes the volume and f is the Fermi-distribution function. Equation 
(4) can be obtained from the currentxurrent correlation by using the equation of motion 
for the velocity operators, i.e. up = i(H, r p ) ,  and performing the trace in coordinate 
representation. Both kernels in (46) contribute to the Hall conductivity. Since K(+) in 
contrast to K(-)  is non-singular for w + 0 we perform the calculation of U$:) first. When 
expanding K(+) with respect to w the zeroth term depends on ( x  - x ’ ) ~  + ( y  - Y ’ ) ~ ,  
z - z r  only and thus cannot contribute to c7$:). To the lowest non-vanishing order in w 
we obtain 

a$:’(w) = - e2w2 ~f(E)A(r1,r2,r3)z(r17r2,r3; E ) d r l  d r2  dr3  d E  ( 5 )  

(6) 

(7) 

6nV 
where 

A(rl , r 2 ,  r 3 )  = 4(rl x r2 + r2 x r3 + r3 x rl)z 

I(rl ,r2 , r3;  E )  = Re[G+(r l ,  r2 ; E)G+(r2 ,r3; E)G+ (r3 ,r1 ; E )  - ( r ~  -3)l. 

denotes the orientated area of the triangle spanned by rl, r2,  r3 and 

For the calculation of I in (7) it is convenient to represent it as a functional integral over 
commuting and anticommuting variables 
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where the action 

&(E - H o  + iq)@ d r  + (9) 

is given in terms of the supervector @ = (s, x) with s being commuting and x anti- 
commuting. We calculate the functional integral of (8) using the saddle-point method. 
The instanton solution corresponding to the action of (9) in the limit of high magnetic 
fields, when only the tail of the lowest Landau level (LLL) is occupied, has already been 
studied in previous works [3,4]. In the functional integral representation the density of 
states reads p(E) = - (1/n) Im G+(r ,  r; E) with 

G + ( r ,  r;  E )  = - i [d&][d@] ~ f ( r )  exp( -S). J 
For later use we repeat the results 

2 1 1 j & l  
--- & 2 d 2  r2 (-)'exp r2 (- (!I2) ford  = 2 

constant - ford  = 3 i P(E) = 

with E = E - 0 , / 2 ,  r2 = (2n12/A)-112, r3 = (32n12/3A 6) -'I3, and 1 denotes themag- 
netic length. Of course, for d = 2, this agrees with Wegner's exact result [5,6] in the 
limit of large I~l/r~. 

Both results have been obtained by Ioffe and Larkin [3] using the optimal fluctuation 
method and for 2~ Affleck [4] rederived it using supersymmetry. We perform the 
calculation of the integral in (8) starting from the same one-instanton approximation 
underlying (11). As in Affleck's calculation for the density of states (cf [4]) there is no 
contribution from the trivial saddle-point s = 0 and the leading term in (8) is given fors 
being the instanton solution 

for d = 2 

sC1(r) = Ag,(O)(r) withA2 = (12) 
ford  = 3. 

In the two-dimensional case gd0)(r) is the m = 0 eigenfunction of the unperturbed 
Hamiltonian in the symmetrical gauge; in 3~ it has to be multiplied by the function 
g(z) =(ml~1/2)'/~cosh-'(d2ml~lz). The functional integrations are performed after 
expanding the involved fields with respect to the set of eigenfunctions of Ho, which for 
the LLL reads 

g , ( m ) ( r )  = g(z)u'"(x, y) 

u(~)(x, y) = (1/.\/2n1*m!)[(x + iy)/211m exp- [(x' +y2)/41*]. (13) 

The integral over all field configurations are calculated by integrating over the set of 
commuting and anticommuting coefficients. Since the coefficients of the fermionic 
m = 0 mode cannot come from expanding the action, a non-vanishing result for 
J(r, ,  r2, r3; E) can only be obtained if in one pair of Grassmann fields in (8) the variable 
x as well as 2 is a fermionic zero-mode. Using the same notation as in [4] we thus obtain 
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~ a2s det'- a (!&) A 2  

axax 
Z(rl, r 2 ,  r3 ;  E )  = e-So det'- 

asiaSi 

" 1  
x 4n Im {I dro [ q ( m ) ( r l  - ro)q(m)'(r2 - ro )  q(O)(rz - ro) 

m = l  F 

x q(0)*(r3 - ro)q(0)(r3 - ro)q(O)*(rl - ro) - (r2 e r 3 )  - ( r l  r 3 ) ] }  (14) 

where So is the saddle-point value of the action corresponding to the solution of (9), the 
primes denote the omission of zero-modes in the determinants and A, are the Jacobians 
originating from the transformations of the bosonic zero-modes to the continuous 
parameters 6, ro. q(") are the normalised eigenfunctions of H o  in the symmetrical gauge 
and A?) denote the corresponding diagonal elements of the operator a2S/afax.  Each 
term occurring in the above sum is proportional to sin(m(cui - ai)) where a, is the polar 
angle of r. Since the sine-functions for different positive integers m are orthogonal on 
the one hand and the oriented area A(rl,  r2, r3) contains only terms proportional to 
sin(a, - a,) on the other hand, the Hall conductivity is just determined by the con- 
tribution f i1) (r l ,  r2, r3; E )  originating from the m = 1 modes. 
Z(')(r1, r2 ,  r3 ;  E) = p(E)( l tA2/12Ag))A(rl ,  r2 ,  r 3 )  

x I Iq(O)(r1 - r o l l 2  I q ( O ) ( r 2  -r0)l2 lv(O)(r3 - . O N 2  dro (15) 

with the density of states p(E) from (11). In 2D Ag) = lel/2 and the Hall conductivity (5) 
finally reads 

where n is the integrated density of states. In 3D we obtain correspondingly 
a:)(@) = (e2w2/r$)2Z2n (16) 

After reviewing the arguments leading to (13)-(15) it is easy to understand that ag) 
cannot contain a term linear in w ,  because the average of the product of k retarded 
(advanced) Green functions at the same energy calculated from the action of (9) is 
rotationally invariant in the x, y-plane. For k = 2 this implies that the averaged product 
depends on (x - x 0 2  + (y - Y ' ) ~  and z - 2' only, as already mentioned above. This can 
be seen explicitly by constructing the corresponding functional integral representation 
by analogy to (8); in the saddle-point approximation it just contains the bosonicinstanton 
solution and one pairing from the fermionic zero mode in the pre-exponential. 

In order to calculate the longitudinal conductivity and to justify that 05;) has no 
contributions of lower than quadratic order in o we have to study the average of 
G+(r,  r')G-(r', r ) .  In the functional integral representation of ai;.) two pairs of super- 
vectors have to be introduced. 

In the localization regime the average G + G -  has a (iw)-' singularity, which can 
already be obtained in the one-instanton approximation, and a logarithmic singularity 
due to the tunnelling between two instantons. For a,, the result reads 

a,(w) = c1 iop(EF) + c2w2 lnv(l/02).  (18) 
For B = 0 Houghton et d[7 ]  derived v = d + 1 in the hydrodynamic limit. For the lower 
tail of the LLL Ape1 [8] obtained v = 1 in 2D. Both approaches were based on the optimal 
fluctuation method and the results could be reproduced by supersymmetry. 
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The kernel K ( - )  contributes to the Hall conductivity as well but it can be shown that 
the o contributions to 0;;) of the same order as those in (18) vanish. 

The term of the lowest possible order originates from an expansion around the one- 
instanton contribution to G’G- and the corresponding term in 0;;) is proportional to 
02. Let us briefly resume the scheme of calculation. 

In the functional integral representation of the mixed two-particle Green function 
two pairs of supervectors are involved 

G + ( r ,  r ’ )G- ( r ’ , r )  

S 2  = -i  

0 = ( @ I ,  0 2 ) .  (19) 

Neglecting the o and q terms the stationarity condition for 5020 is the same as 
for the calculation of the density of states. The bosonic instanton solution may be 
parametrised by the angles of SU(1,l). Integrating the symmetry breaking part over 
these angles yields in leading order a (io)-’ singularity which is characteristic for the 
localization regime. The leading term of the longitudinal conductivity already given in 
(18) isobtainedfrom (19)for allGrassmannfieldsxl,Tfl, x 2 , X ;  beingm = Oeigenmodes. 
However, to obtain a contribution to ayx one pair of fermions has to be built from the 
m = 1 mode whereas the other pair still has m = 0. Consequently (19) contributes to 
0;;) in the form 

so that in leading order 

a$;)(o) = (e2W2/)&1)l2p(E) (21) 

in two dimensions. Since in the deep tails of the density of states n(E)  = p(E).  r:/2)& 
we arrive at the remarkable conclusion that 0;;) from (16) and 0;;) from (21) are 
identical and hence 

The analogous result can be obtained for the 3D case. 

calculate the Hall resistivity in the localization regime 
Finally, from (19) it follows that c1 (18) is given by c1 = - e212 and we can explicitly 

P x y  = - (wen>(l&l/r*)-2 (23) 

in two dimensions and 
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in three dimensions. Supposing the number of particles to be fixed we see that in both 
cases the Hall coefficient RH = pxy/B decreases logarithmically with B in the high 
magnetic field limit, i.e. 

RH = - c( l /en)  ln-'(B/Bo) (25) 
where Bo = n/e  in 2 ~ ,  Bo = n3/4/e(2m)1/2A1/4 in 3~ and c is a constant of the order of 
unity which depends only on the dimensionality. 

We are now able to establish the relationship between our theoretical results and the 
experimental situation. We have shown that the finiteness of the Hall coefficient is a 
natural phenomenon in the localization regime where pxx diverges. We performed our 
calculations for the case in which the Fermi energy is situated in the tail of the LLL. This 
is in agreement with the parameters characterising the experiments of Hopkins et al [l] 
who found that near the MI-transition 

y = UC/2Eg = U g / 1 2  = 0.2 5 = W,/EF 2: 2 (26) 
where Eg is the donor binding energy, aB the effective Bohr radius and EF the Fermi 
energy at B = 0. The equality 5 > 1 means that only the LLL is occupied. For y = 0.2 
magnetic freezing out which is the predominant effect at y @ 1 does not yet play an 
essential role. 

In our theoretical description we expect freezing out not to be important if the disorder 
induced level broadening largely exceeds the donor binding energy, i.e. r3 @ Eg. On 
the other hand a comparison with (11) shows that the Fermi energy is surely situated in 
the localization regime for 

n 6 c(1/2nP) vzr3 (27) 
with c 6 0.1, so that the band width satisfies 

r3 3 4JcC2(nUi)2y2Eg (28) 
We adopt the Mott criterion for the critical doping concentration nu; b 0.02 and 

deduce that for the parameters given in (23) the band width r3 indeed exceeds E B  which 
enables us not to consider freezing out as the dominant effect. 

Nevertheless a competitive influence of bound states which are not included in our 
model cannnot be excluded. We can take this fact into account on a phenomenological 
level by replacing n in (23)-(25) by the apparent carrier concentration which is the 
concentration n diminished by the already frozen out states. With this modification of 
(25) we can understand the slight increase of the Hall coefficient which has been observed 
in the experiment. 
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